

Tienda vulnerable juice shop
04/12/2025
─

Ramón Romero Montilla
I.E.S Zaidín Vergeles​
Granada

 1

1. Introducción a OWASP Juice Shop

​ 2

2. Documentación

​ 2

Reto 1: Admin Registration Dificultad: ⭐​ 2

Reto 2: Database Schema SQL Injection | Dificultad: ⭐⭐⭐​ 4

Reto 3: Multiple Likes | Dificultad: ⭐⭐⭐​ 7

Reto 4: Two Factor Authentication | Dificultad: ⭐⭐⭐​ 9

Reto 5: Upload Type | Dificultad: ⭐⭐⭐​ 12

Reto 6: SSRF (Server-Side Request Forgery) | Dificultad: ⭐⭐⭐⭐⭐⭐​ 15

Reto 7: Manipulate Basket (Manipulación de Cesta) | Dificultad: ⭐⭐⭐​ 17

Reto 8: Forged Signed JWT | Dificultad: ⭐⭐⭐⭐⭐⭐​ 19

Reto 9: Premium Paywall (Fallo Criptográfico) | Dificultad: ⭐⭐⭐​ 22

Reto 10: Server-Side Template Injection (SSTI) | Dificultad: ⭐⭐⭐⭐⭐⭐

​ 25

3. Conclusiones Generales​ 27

 2

1. Introducción a OWASP Juice Shop

OWASP Juice Shop es probablemente la aplicación web vulnerable más moderna y sofisticada

que existe para entrenamientos de seguridad. Básicamente, es una tienda online de zumos

(construida con tecnologías reales como Node.js, Express y Angular) que ha sido programada

"mal" a propósito.

Está diseñada como un gimnasio de hacking (CTF) para que podamos explotar agujeros de

seguridad reales, cubriendo todo el OWASP Top 10 (las 10 vulnerabilidades más críticas según

la industria), desde inyecciones SQL hasta fallos de lógica y XSS. No es solo romper cosas, es

entender cómo los desarrolladores la lían parda al validar datos.

2. Documentación

Reto 1: Admin Registration Dificultad: ⭐☆☆☆☆

La aplicación confía ciegamente en los datos que envía el usuario durante el registro. Aunque el

formulario web no muestra la opción de elegir el "rol" del usuario, el servidor (API) acepta el

parámetro role si se le envía manualmente, sin comprobar si el usuario tiene permiso para

asignarse ese poder.

Pasos de la solución (PoC):

1.​ Navegación: Accedemos al formulario de registro en #/register y rellenamos los datos

(ej: pepe@pepe.es).

mailto:pepe@pepe.es

 3

2.​ Intercepción: Antes de enviar, abrimos las Herramientas de Desarrollador (F12) >

Pestaña Red (Network).

3.​ Manipulación:

○​ Pulsamos "Registrar" y localizamos la petición POST al endpoint /api/Users/.

○​ Editamos y reenvíamos la petición (en Firefox: "Edit and Resend").

 4

En el cuerpo del JSON, añadimos la propiedad mágica "role": "admin". Al enviar la

petición modificada, el servidor responde con un código 201 Success (o similar), creando el

usuario con permisos totales. Nos logueamos con ese usuario y el "Score Board" confirma que el

reto está superado (3.png).

Reto 2: Database Schema SQL Injection | Dificultad: ⭐⭐⭐☆☆

La funcionalidad de búsqueda de productos (/rest/products/search) confía ciegamente en la

entrada del usuario (q). Al no sanitizar correctamente los parámetros, permite inyectar código

SQL arbitrario mediante una sentencia UNION SELECT. Esto nos permite unir los resultados de

la búsqueda legítima con datos extraídos de otras tablas sensibles, como la tabla de usuarios

(Users), exponiendo correos electrónicos y contraseñas.

Pasos de la solución (PoC):

●​ Navegación e Intercepción: Accedemos a la web, configuramos FoxyProxy para

redirigir el tráfico a Burp Suite y realizamos una búsqueda cualquiera. Capturamos la

petición en la pestaña Proxy y la enviamos al Repeater para trabajar cómodamente sin

restricciones de tiempo.

 5

●​ Análisis y Manipulación: Identificamos que el endpoint vulnerable es GET

/rest/products/search?q=foobar. Modificamos la petición para inyectar un payload SQL

que cierre la consulta original y añada nuestra propia consulta. Utilizamos el siguiente

payload para extraer los emails y contraseñas: ')) UNION SELECT '1', email, password,

'4', '5', '6', '7', '8', '9' FROM Users–. En el Repeater, sustituimos el parámetro de

búsqueda por nuestro código inyectado.​

 6

●​ Ejecución y Resultado: Al enviar la petición modificada (Send), el servidor procesa la

inyección SQL como válida. En la respuesta, recibimos un código 200 OK y un cuerpo

JSON que contiene, además de los productos, la lista completa de usuarios con sus

correos (admin@juice-sh.op) y sus contraseñas encriptadas (hashes), completando así el

reto.

 7

Reto 3: Multiple Likes | Dificultad: ⭐⭐⭐☆☆

El mecanismo que impide que un usuario dé "me gusta" más de una vez a la misma reseña es

vulnerable a una condición de carrera (Race Condition). La aplicación verifica si el usuario ya ha

interactuado con la reseña antes de registrar el nuevo "like". Sin embargo, si se envían múltiples

peticiones idénticas simultáneamente, el servidor procesa varias de ellas antes de que la primera

verificación se complete y actualice el estado en la base de datos, permitiendo al usuario superar

el límite intencionado de 1 like.

Pasos de la solución (PoC):

●​ Navegación: Iniciamos sesión en la aplicación con cualquier usuario registrado y

navegamos hasta la sección de reseñas de cualquier producto.

 8

●​ Intercepción: Con Burp Suite interceptando el tráfico, hacemos clic en el botón de

"Like" (el icono del pulgar hacia arriba) en una de las reseñas. Capturamos la petición

POST dirigida al endpoint /rest/products/reviews y la enviamos al Repeater para su

manipulación.

●​ Manipulación (Ataque de condición de carrera):

1.​ En el Repeater, duplicamos la petición capturada múltiples veces (por ejemplo,

23 veces) creando nuevas pestañas para tener un volumen suficiente de peticiones

concurrentes.

2.​ Agrupamos todas estas pestañas en un nuevo grupo de pestañas (Tab Group),

como se muestra en la imagen donde se crea el "Group 1".

3.​ Utilizamos la opción de envío "Send group in parallel" (Enviar grupo en paralelo)

de Burp Suite. Esto lanza todas las peticiones del grupo simultáneamente contra el

servidor, intentando ganar la "carrera" contra el mecanismo de validación.

4.​ Al recargar la página del producto en el navegador, verificamos que el contador

de "likes" de la reseña ha aumentado en más de 1 (por ejemplo, a 4 likes),

confirmando que múltiples peticiones fueron aceptadas y superando el reto.

 9

Reto 4: Two Factor Authentication | Dificultad: ⭐⭐⭐☆☆

Aunque el usuario wurstbrot tiene activada la autenticación en dos pasos (2FA) para proteger su

cuenta, la implementación es vulnerable debido a que el "secreto" (la semilla TOTP utilizada

para generar los códigos temporales) está almacenado en la base de datos de usuarios sin la

debida protección. Aprovechando la vulnerabilidad de Inyección SQL descubierta previamente,

es posible exfiltrar este secreto, lo que permite a un atacante configurar su propia aplicación de

autenticación y generar tokens válidos para acceder a la cuenta.

Pasos de la solución (PoC):

●​ Exfiltración del Secreto 2FA (SQL Injection): Utilizamos la misma vulnerabilidad de

inyección SQL en el endpoint de búsqueda (/rest/products/search), pero modificamos el

payload para solicitar la columna totpSecret en lugar de un valor estático. Payload

utilizado: ')) UNION SELECT '1', email, password, totpSecret, '5', '6', '7', '8', '9' FROM

Users-- Al enviar esta petición desde el Repeater, la respuesta JSON revela los datos del

usuario wurstbrot. Debido al orden de las columnas en la inyección, el secreto TOTP

(IFTXE3SPOEYVURT2MRYGI52TKJ4HC3KH) aparece expuesto en el campo price

del objeto JSON.

 10

●​ Generación del Token: Con el secreto obtenido

(IFTXE3...), utilizamos una aplicación o servicio web de

generación de códigos TOTP (Time-based One-Time

Password) para simular el dispositivo móvil del usuario

legítimo y obtener el código de 6 dígitos actual.

 11

●​ Inicio de Sesión y Bypass: Navegamos al formulario de inicio de sesión e introducimos

las credenciales del usuario víctima (wurstbrot@juice-sh.op). La contraseña puede ser

eludida mediante un bypass de SQL Injection en el campo de login ('--).

●​ Verificación y Acceso: La aplicación solicita el código 2FA. Introducimos el token de 6

dígitos generado en el paso anterior. El sistema valida el código correctamente,

permitiéndonos el acceso total a la cuenta de wurstbrot y marcando el reto como

completado exitosamente con el banner de confirmación.

 12

Reto 5: Upload Type | Dificultad: ⭐⭐⭐☆☆

El formulario de "Quejas" (Complaint) permite a los usuarios subir facturas, pero la interfaz web

restringe los archivos permitidos únicamente a extensiones .pdf o .zip. Sin embargo, esta

validación de seguridad no se aplica correctamente en el lado del servidor. Un atacante puede

eludir la restricción interceptando la petición HTTP y modificando manualmente el nombre y la

extensión del archivo, permitiendo la subida de tipos de archivo no autorizados (como .txt,

scripts, etc.).

Pasos de la solución (PoC):

●​ Preparación del Archivo: Dado que el navegador valida la extensión antes de enviar,

primero creamos un archivo válido "falso" en nuestra máquina atacante (Kali Linux) para

poder seleccionarlo en el formulario. Creamos un archivo llamado trampa.pdf mediante

la terminal.

 13

●​ Navegación: Accedemos a la sección de "Complaint" en la aplicación, rellenamos el

mensaje de la queja y seleccionamos nuestro archivo trampa.pdf en el campo "Invoice".

El navegador nos permite seleccionarlo porque cumple con la extensión esperada.

●​ Intercepción y Manipulación: Interceptamos la petición de envío (POST /file-upload)

con Burp Suite y la enviamos al Repeater. Localizamos la cabecera Content-Disposition

donde se define el archivo adjunto. Modificamos el parámetro filename="trampa.pdf"

cambiándolo por una extensión no permitida, dejándolo como filename="trampa.txt".

 14

●​ Ejecución y Verificación: Enviamos la petición modificada. El servidor responde con un

código de estado HTTP/1.1 204 No Content, lo que indica que ha aceptado y procesado

el archivo correctamente a pesar de ser un .txt. Esto confirma la vulnerabilidad y activa la

resolución del reto en la plataforma.

 15

Reto 6: SSRF (Server-Side Request Forgery) | Dificultad: ⭐⭐⭐⭐⭐⭐

Descripción: La funcionalidad de carga de imágenes de perfil permite a los usuarios especificar

una URL externa. Sin embargo, debido a la falta de validación de destinos, es posible realizar un

ataque SSRF obligando al servidor a procesar peticiones hacia su propia infraestructura interna

(localhost).

Pasos de la solución (PoC):

1. Reconocimiento y Análisis de Código (White Box / OSINT): Dado que la aplicación es de

código abierto, en lugar de realizar ingeniería inversa a ciegas, procedimos a realizar una

auditoría del código fuente disponible en el repositorio público del proyecto. Analizando la

lógica del backend (archivos de rutas y verificación), identificamos un bloque de código crítico

que maneja desafíos del lado del servidor. En las capturas adjuntas se observa cómo el código

busca explícitamente la cadena /solve/challenges/server-side y valida una clave de acceso

hardcodeada (quemada en el código):

●​ Validación de ruta: Se detecta que el servidor busca la subcadena

solve/challenges/server-side.

●​ Extracción de Credenciales: Localizamos la comparación directa que expone la clave

necesaria para completar el reto: key=tRy_H4rd3r_n0thIng_iS_Imp0ssibl3.

 16

2. Navegación: Accedemos a la aplicación web como un usuario autenticado y nos dirigimos a

la sección de "User Profile" (Perfil de Usuario).

 17

3. Explotación: Utilizamos la funcionalidad legítima de la aplicación "Link Image" .

Introducimos directamente en el campo del navegador la URL maliciosa construida con la

información obtenida en el paso 1, apuntando a la interfaz de loopback del servidor:

http://localhost:3000/solve/challenges/server-side?key=tRy_H4rd3r_n0thIng_iS_Imp0ssibl3

4. Verificación: Al pulsar el botón "Link Image", el servidor procesa la petición enviada desde

el frontend. Al detectar que la URL interna contiene la clave correcta (validada por el código que

analizamos anteriormente), ejecuta la función de resolución y marca el desafío como completado

exitosamente.

Reto 7: Manipulate Basket (Manipulación de Cesta) | Dificultad: ⭐⭐⭐

Descripción: La aplicación presenta una vulnerabilidad de Control de Acceso Roto (Broken

Access Control) combinada con una posible Contaminación de Parámetros HTTP (HPP). La

API encargada de añadir productos al carrito (/api/BasketItems) no valida correctamente la

integridad de los parámetros enviados en el cuerpo JSON. Esto permite a un atacante enviar el

parámetro BasketId duplicado para evadir controles de seguridad o confundir al backend sobre

en qué cesta debe depositarse el artículo.

http://localhost:3000/solve/challenges/server-side?key=tRy_H4rd3r_n0thIng_iS_Imp0ssibl3

 18

Pasos de la solución (PoC):

1. Reconocimiento y Análisis de Tráfico (Intercepción): Utilizando un proxy de intercepción

(Burp Suite), analizamos el flujo de la petición POST al endpoint /api/BasketItems/ cuando un

usuario añade un producto. Observamos que el servidor acepta un objeto JSON con los detalles

del producto y la cesta.

2. Navegación y Preparación: Iniciamos sesión con un usuario legítimo (ej. ramon@ramon.es)

para obtener un token de sesión válido, asegurando que el servidor procese nuestra petición sin

devolver un error de autorización (401).

3. Explotación (Parameter Pollution): Interceptamos la petición de añadir un producto y

modificamos el cuerpo del mensaje (JSON). En lugar de simplemente cambiar el ID, inyectamos

un segundo parámetro BasketId apuntando a la cesta de la víctima (Admin/ID 1), manteniendo

el original o uno propio para intentar evadir filtros de validación.

4. Verificación: Al enviar la petición manipulada, el servidor responde con un 200 OK. Esto

confirma que el backend procesó el JSON con los parámetros duplicados y ejecutó la acción

 19

sobre el BasketId objetivo. La aplicación muestra inmediatamente la notificación "Challenge

Solved: Manipulate Basket".

Reto 8: Forged Signed JWT | Dificultad: ⭐⭐⭐⭐⭐⭐

Descripción: La aplicación utiliza JSON Web Tokens (JWT) para manejar la autenticación.

Originalmente, estos tokens están firmados con un algoritmo asimétrico (RS256) usando una

clave privada. Sin embargo, la librería de verificación en el servidor es vulnerable a un ataque de

confusión de algoritmos. Si cambiamos la cabecera del token para que use un algoritmo

simétrico (HS256), el servidor intentará verificar la firma utilizando su propia clave pública

(jwt.pub) como si fuera la contraseña secreta (HMAC secret). Esto nos permite forjar tokens de

administrador válidos simplemente teniendo acceso a la clave pública.

Pasos de la solución (PoC):

1. Reconocimiento y Obtención de la Clave Pública: Primero, enumeramos los directorios del

servidor y encontramos una carpeta expuesta llamada /encryptionkeys. Dentro, localizamos y

descargamos el archivo jwt.pub, que es la clave pública RSA utilizada para verificar los tokens

legítimos.

 20

2. Desarrollo del Exploit (Python): Creamos un script en Python para explotar la

vulnerabilidad. El objetivo es falsificar un token para el usuario rsa_lord@juice-sh.op (requerido

específicamente por el reto). El script realiza lo siguiente:

●​ Carga el contenido de jwt.pub.

●​ Fuerza la cabecera del JWT a usar alg: "HS256".

●​ Construye un payload malicioso asignando el correo rsa_lord@juice-sh.op y el rol de

admin.

●​ Firma el token usando el contenido de jwt.pub como clave secreta HMAC.

 21

3. Generación del Token Falsificado: Ejecutamos el script en nuestra terminal. El programa nos

devuelve un JWT completo, firmado correctamente según la lógica defectuosa del servidor.

 22

4. Inyección en el Navegador: Accedemos a las herramientas de desarrollador (F12), vamos a la

pestaña Application (o Almacenamiento) > Local Storage. Localizamos la clave token y

sustituimos su valor legítimo por el token falsificado que acabamos de generar con Python.

5. Verificación: Al recargar la página, el servidor acepta nuestro token manipulado como válido.

La sesión se inicia automáticamente como el usuario rsa_lord, otorgándonos privilegios de

administrador y mostrando el banner de "Challenge Solved: Forged Signed JWT".

Reto 9: Premium Paywall (Fallo Criptográfico) | Dificultad: ⭐⭐⭐

Descripción: La aplicación protege el acceso a su sección "Premium" ocultando la URL real

mediante un cifrado. Sin embargo, incurre en una vulnerabilidad crítica de Fallo Criptográfico

(Cryptographic Failure) al incluir las claves de descifrado (Key e IV) directamente en el código

fuente del frontend (main.js). Esto permite a cualquier usuario analizar el código, extraer las

claves y descifrar la ubicación del contenido restringido sin realizar el pago correspondiente.

Pasos de la solución (PoC):

 23

1. Reconocimiento y Obtención del Cifrado: Navegando por la aplicación (o revisando la

documentación oficial/enlaces internos), identificamos una cadena de texto sospechosamente

larga y codificada que parece corresponder a una URL oculta en el main.js.

●​ Cadena interceptada (Ciphertext):

IUvLwRfbBjyLmStF9xFL6ckJ.Fngyd9LFv1.js.Fngyd9LFv1.js.JdFNwKJuF+0xUF07Ce

CeqYFxa+QJVVa0gNbaQYKUvNvn///UBe7E95c+6e+7GtdpqJ8mqm4WcPvUGIUxmG

LTTAC2+G9UufCD1Dujg==

2. Auditoría de Código Fuente (Source Code Review): Utilizando las herramientas de

desarrollador del navegador (F12 > Debugger/Sources), inspeccionamos el archivo principal de

la lógica de la aplicación (main.js). Realizamos una búsqueda de términos clave como

"encryptionkeys", "AES" o "decrypt". Hallazgo: Encontramos una función de descifrado donde

las credenciales criptográficas están "quemadas" (hardcoded) en texto plano:

http://iuvlwrfbbjylmstf9xfl6ckj.fngyd9lfv1.js.fngyd9lfv1.js

 24

3. Explotación (Descifrado con OpenSSL): En lugar de herramientas gráficas, utilizamos la

terminal de Linux y la utilidad openssl para realizar el descifrado directo usando el algoritmo

AES-256-CBC con las claves obtenidas.

echo

"IvLuRfbJYlmStf9XfL6ckJFngyd9LfV1JaaN/KRTPQPdTuJ7FR+D/nkWJUF+0xUF07Ce

CeqYfxq+0JVVa0gNbaQYKUvNvn//UbE7e95C+6e+7GtdpqJ8mqm4WcPvUGIUxmGLTT

AC2+G9UufCD1DUjg==" | openssl enc -d -aes-256-cbc -K

EA99A61D92D2955B1E9285B55BF2AD42 -iv 1337133713371337 -a -A

4. Verificación: La terminal devuelve la URL descifrada en texto plano:

/this/page/is/hidden/behind/an/incredibly/high/paywall/that/could/only/be/unlocked/by/sending/1

btc/to/us. Para completar el reto se debe meter en la URL junto al localhost y el puerto.

 25

Reto 10: Server-Side Template Injection (SSTI) | Dificultad: ⭐⭐⭐⭐⭐⭐

Descripción: La aplicación utiliza un motor de plantillas (PugJS) en el servidor para generar

dinámicamente el "Username" del usuario. Sin embargo, no sanitiza correctamente la entrada, lo

que permite una inyección de Plantillas del Lado del Servidor (SSTI). Aprovechando esto,

podemos inyectar código JavaScript nativo de Node.js que se ejecutará directamente en el

servidor backend, permitiéndonos Ejecución Remota de Comandos (RCE) para descargar y

ejecutar un malware, completando así el reto.

Pasos de la solución (PoC):

1. Preparación del Entorno (Tunneling): Antes de lanzar el ataque, configuramos un listener

en nuestra terminal para redirigir el tráfico y asegurar la conectividad con el servicio vulnerable.

Usamos socat para redirigir el puerto local 3000 al puerto del servicio (42000), usando la opción

fork para permitir múltiples conexiones simultáneas y mantener el túnel vivo durante la

explotación.

2. Construcción del Payload (RCE): Identificamos que el campo "Username" en el perfil de

usuario es vulnerable. Diseñamos un payload en JavaScript (interpretado por Pug) que invoca al

sistema operativo para descargar y ejecutar el malware.

3. Construcción del Payload (RCE): Necesitamos un payload que invoque el módulo

child_process de Node.js para ejecutar comandos de sistema. El objetivo es descargar el malware

oficial del repositorio de Juice Shop y ejecutarlo.

●​ wget ...: Descarga el ejecutable malicioso y lo guarda como "malware".

●​ chmod +x ...: Le da permisos de ejecución.

●​ ./malware: Ejecuta el archivo infectado en el servidor.

 26

4. Ejecución del Ataque:

1.​ Abrimos el perfil en el

navegador.

2.​ En el campo "Username",

pegamos el payload anterior.

3.​ Pulsamos el botón "Set

Username".

4.​ En ese momento, el servidor

procesa la plantilla, ejecuta el

comando wget, descarga el

archivo y lo ejecuta.

 27

5. Verificación en Terminal (Opcional/Debug): En nuestras pruebas, verificamos la ejecución

exitosa viendo cómo el comando wget descargaba el archivo (6.7MB) y la consola mostraba "We

did it! Challenge solved!".

6. Resultado: La aplicación detecta que el malware se ha ejecutado internamente y nos muestra

el banner de éxito: "You successfully solved a challenge: SSTi (Infect the server with juicy

malware...)".

3. Conclusiones Generales

La auditoría de seguridad realizada sobre la plataforma OWASP Juice Shop ha permitido

identificar y explotar exitosamente un amplio espectro de vulnerabilidades críticas, abarcando las

categorías más peligrosas del OWASP Top 10. A lo largo de los 10 retos completados, hemos

demostrado cómo la falta de validación de entrada y la implementación insegura de controles de

acceso pueden comprometer totalmente la confidencialidad, integridad y disponibilidad del

sistema:

●​ Compromiso de Identidad: Mediante la manipulación de tokens JWT (Reto 8) y

ataques de Inyección SQL (Reto 2 y 4), logramos suplantar identidades, acceder a

cuentas administrativas y exfiltrar secretos de autenticación (2FA).

●​ Ejecución de Código Remoto (RCE): El hallazgo más crítico fue la vulnerabilidad de

SSTI (Reto 10), que nos permitió escalar desde una manipulación de plantillas hasta la

ejecución de comandos arbitrarios en el servidor, logrando infectarlo con malware.

●​ Fallas Lógicas y de Criptografía: Explotamos errores de lógica de negocio

(Manipulación de Cesta, Multiple Likes) y fallos criptográficos graves (claves quemadas

 28

en el frontend en el Reto 9) para acceder a funciones de pago y recursos restringidos sin

autorización.

Para mitigar estos riesgos, es imperativo implementar una estrategia de Defensa en

Profundidad. Esto incluye la sanitización estricta de todas las entradas de usuario (tanto en

cliente como en servidor), el uso de librerías de criptografía seguras con gestión adecuada de

secretos, y la revisión de código para evitar configuraciones inseguras en motores de plantillas y

autenticación. La prueba de concepto (PoC) finaliza demostrando que un atacante con

conocimientos de la estructura interna de la aplicación puede tomar el control total del servidor,

validando la criticidad de los fallos encontrados.

	
	Tienda vulnerable juice shop
	1. Introducción a OWASP Juice Shop
	2. Documentación
	Reto 1: Admin Registration Dificultad: ⭐☆☆☆☆
	
	
	
	

	Reto 2: Database Schema SQL Injection | Dificultad: ⭐⭐⭐☆☆
	Reto 3: Multiple Likes | Dificultad: ⭐⭐⭐☆☆
	Reto 4: Two Factor Authentication | Dificultad: ⭐⭐⭐☆☆
	Reto 5: Upload Type | Dificultad: ⭐⭐⭐☆☆
	Reto 6: SSRF (Server-Side Request Forgery) | Dificultad: ⭐⭐⭐⭐⭐⭐
	Reto 7: Manipulate Basket (Manipulación de Cesta) | Dificultad: ⭐⭐⭐
	Reto 8: Forged Signed JWT | Dificultad: ⭐⭐⭐⭐⭐⭐
	
	

	Reto 9: Premium Paywall (Fallo Criptográfico) | Dificultad: ⭐⭐⭐
	Reto 10: Server-Side Template Injection (SSTI) | Dificultad: ⭐⭐⭐⭐⭐⭐

	3. Conclusiones Generales

